Dalamsatu garis atau rusuk pada bangun ruang kubus terdapat 4 pasangan garis bersilangan. Untuk garis AB, perhatikan gambar di bawah ini. Adapun pasangan ruas garis yang bersilangan pada garis AB antara lain: a. AB dengan CG. b. AB dengan DH. d. AB dengan EH.
Garis dan Sudut merupakan salah satu materi dalam matematika yang akan kita pelajari di bangku kelas 7 SMP. Nah, kali ini kita akan mempelajari berbagai hal yang berkaitan dengan garis dan dari hubungan antara dua buah garis, jenis-jenis sudut, sifat-sifat sudut, dan juga satuan yang digunakan untuk simak baik-baik ulasan berikut dua buah GarisSudutPengertian SudutBagian-bagian pada suatu sudutJenis-jenis SudutKedudukan Dua garisHubungan antar SudutHubungan Antar Sudut apabila Dua Garis SejajarSatuan SudutContoh Soal dan PembahasanGaris adalah suatu susunan titik-titik bisa tak hingga yang saling bersebelahan serta berderet memanjang ke dua arah kanan/ kiri, atas/ bawah.Kedudukan dua buah GarisGaris SejajarDua Garis Sejajar yaitu jika garis tersebut berada dalam satu bidang datar serta tidak akan pernah bertemu atau berpotongan apabila garis tersebut diperpanjang hingga tak dari garis sejajar yaitu //Dua garis disebut saling sejajar apabila dua garis tersebut tberada pada satu bidang atau perpanjangannya tidak akan pernah beberapa sifat dari garis sejajar, antara lainMelewati suatu titik diluar garis, bisa dibuat tepat satu garis lain yang sejajar dengan garis terdapat su atugaris yang memotong salah satu dari dua garis yang sejajar, maka garis tersebut akan memotong garis suatu garis sejajar dengan garis lainnya, maka kedua garis tersebut juga akan saling sejajar satu sama lainGaris BerpotonganDua buah garis akan disebut berpotongan jika kedua garis tersebut mempunyai sutau titik potong atau biasa disebut dengan titik berhimpitDua buah garis akan disebut berhimpit jika kedua garis tersebut mempunyai setidaknya dua titik contohnya jarum jam pada saat menunjukkan pukul 12 pas. Maka kedua jarum jam tersebut akan saling BersilanganDua buah garis bisa disebut saling bersilangan jika kedua garis tersebut tidak sejajar serta tidak berada pada satu memahami beragam kedudukan garis di atas perhatikan pada gambar di bawah iniSudutSudut merupakan hal yang dibentuk oleh pertemuan antara dua buah sinar ataupun dua garis ini merupakan suatu daerah yang terbentuk dari sebuah sinar yang diputar pada pangkal sinar. Sudut dinotasikan dengan menggunakan simbol “∠”.Pengertian SudutDi dalam ilmu matematika, sudut dapat diartikan sebagai sebuah daerah yang terbentuk karena adanya dua buah garis sinar yang titik pangkalnya saling bersekutu atau dalam geometri merupakan suatu besaran rotasi suatu ruas garis dari satu titik pangkalnya ke posisi yang itu, dalam bangun dua dimensi yang beraturan, sudut bisa juga didefiniskan sebagai ruang antara dua buah ruas garis lurus yang saling berpotongan. -sc wikipediaBagian-bagian pada suatu sudutSudut mempunyai tiga bagian penting, diantaranya yaituKaki SudutMerupakan garis sinar yang membentuk sudut SudutMerupakan titik pangkal atau titik potong tempat berhimpitnya garis SudutDaerah atau ruang yang terdapat diantara dua kaki lebih jelasnya lihat gambar berikutJenis-jenis SudutUntuk menyatakan besaran pada suatu sudut maka memakai satuan derajat °, menit , dan juga detik “, di manaSudut yang besarnya 90° disebut sebagai sudut yang besarnya 180° disebut sebagai sudut yang besarnya antara 0° serta 90° disebut sebagai sudut yang besarnya antara 90° serta 180° 90°< D < 180° disebut sebagai sudut yang besarnya lebih dari 180° serta kurang dari 360° 180° < D < 360° disebut sebagai sudut dua sudut yang saling berpelurus bersuplemen yaitu 180°. Sudut yang satu adalah pelurus dari sudut yang dua sudut yang saling berpenyiku berkomplemen yaitu 90°. Sudut yang satu adalah penyiku dari sudut yang dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut sebagai dua sudut yang saling bertolak belakang. Dua sudut yang saling bertolak belakang merupakan sudut yang sama Dua garisBerikut adalah kedudukan dari dua garis, antara lainDua garis atau lebih disebut saling sejajar jika garis-garis tersebut berada pada satu bidang datar serta tidak akan pernah bertemu atau berpotongan apabila garis tersebut diperpanjang hingga tak garis disebut akan saling berpotongan jika garis tersebut terletak pada satu bidang datar serta memiliki satu titik garis disebut saling berimpit jika garis tersebut berada pada satu garis lurus, sehingga hanya terlihat satu garis lurus garis disebut saling bersilangan jika garis-garis tersebut tidak berada pada satu bidang datar serta tidak akan berpotongan jika antar SudutSudut BerpenyikuJika terdapat dua buah sudut yang saling berhimpitan serta membentuk sudut siku-siku, maka sudut yang satu akan menjadi sudut penyiku untuk sudut yang lain sehingga kedua sudut tersebut disebut sebagai sudut yang saling berpenyiku komplemen.Berikut adalah gambar untuk sudut berpenyikuJumlah dua sudut yang saling berpenyiku berkomplemen yaitu 90°. Sudut yang satu adalah penyiku dari sudut yang BerpelurusJika terdapat dua buah sudut yang saling berhimpitan serta saling membentuk sudut lurus maka sudut yang satu akan menjadi sudut pelurus untuk sudut yang lainnya. Sehingga kedua sudut terebut dapat disebut sebagai sudut yang saling berpelurus suplemen.Berikut adalah gambar untuk sudut berpelurusJumlah dua sudut yang saling berpelurus bersuplemen yaitu 180°. Sudut yang satu adalah pelurus dari sudut yang Antar Sudut apabila Dua Garis SejajarDipotong oleh Garis LainPerhatikan baik-baik pada gambar di bawah iniSudut Sehadap sama besarMerupakan suatu sudut yang mempunyai posisi yang sama serta besarnyapun sama. Pada gambar di atas, sudut yang sehadap yaitu∠A = ∠E ∠B = ∠F ∠C = ∠G ∠D = ∠HSudut Dalam Berseberangan sama besarMerupakan sautu sudut yang terdapat dalam bagian dalam serta posisinya saling berseberangan. Dalam gambar di atas sudut dalam berseberangannya yaitu∠C = ∠E ∠D = ∠FSudut Luar Berseberangan sama besarMerupakan suatu sudut yang terletak di bagian luar serta posisinya saling berseberangan, sebagai contoh∠A = ∠G ∠B = ∠HSudut-Sudut Sehadap dan BersebranganApabila dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya terdapat dua buah garis dipotong oleh garis lain maka besar dari sudut-sudut luar berseberangan yang terbentuk ialah sama terdapat dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk ialah sama terdapat dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak ialah 180°.Sudut Dalam SepihakMerupakan sudut yang terletak di bagian dalam serta posisinya terletak pada sisi yang sama. Jika dijumlahkan, sudut yang saling sepihak akan membentuk sudut 180°. Sebagai contoh∠D + ∠E = 180° ∠C + ∠F = 180°Sudut Luar SepihakMerupakan suatu sudut yang terletak di bagian luar serta posisinya terletak pada sisi yang sama. Jika dijumlahkan, sudut yang saling sepihak akan membentuk sudut 180°. Sebagai contoh∠B + ∠G = 180° ∠A + ∠H = 180°Sudut bertolak belakang sama besarMerupakan suatu sudut yang posisinya saling bertolak belakang, dalam gambar di atas, sudut yang bertolak belakang yaitu∠A = ∠C ∠B = ∠D ∠E = ∠G ∠F = ∠HPasangan sudut yang saling bertolak belakang terjadi apabila terdapat dua garis berpotongan sehingga dua sudut yang letaknya saling membelakangi titik potongnya disebut sebagai dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang merupakan sama SudutPada dalam ukuran derajat, nilai 1 derajat mewakili suatu sudut yang diputar sejauh 1/360 putaran. Yang berarti 1°=1/360 menyebutkan suatu ukuran sudut yang lebih kecil dari derajat ° kita dapat memakai smbol menit dan juga detik ”.Perhatikan baik-baik hubungan derajat, menit, dan detik di bawah ini1 derajat 1° = 60 menit 60′1 menit 1′ = 1/60°1 menit 1′ = 60 detik 60”1 derajat 1° = 3600 detik 3600”1 detik 1” = 1/3600°Ukuran sudut dalam satuan radian1° = p/180 radianatau1 radian = 180°/pJika nilai p = 3,14159 sehingga1° = p/180 radian = 3,14159/180 = 0,017453atau1 radian = 180°/p = 180°/3,14159 = 57,296°Contoh Soal dan PembahasanBerikut akan kami berikan beberapa soal terkait garis dan sudut, diantaranya yaituSoal buah garis masing-masing k, l dan m dalam susunan seperti gambar k merupakan sejajar dengan garis l serta garis m memotong garis k dan tentukanlaha sudut-sudut yang sehadap b sudut-sudut yang bertolak belakang c sudut-sudut yang berseberangan dalam d sudut-sudut yang berseberangan luar e sudut-sudut dalam sepihak f sudut-sudut luar sepihak g sudut-sudut berpelurusJawaba sudut-sudut sehadap yaitu∠A1 dengan ∠B1 ∠A4 dengan ∠B4 ∠A2 dengan ∠B2 ∠B3 dengan ∠B3b sudut-sudut bertolak belakang yaitu∠A1 dengan ∠A3 ∠A2 dengan ∠A4 ∠B1 dengan ∠B3 ∠B2 dengan ∠B4c sudut-sudut berseberangan dalam dalam berseberangan yaitu∠A3 dengan ∠B1 ∠A4 dengan ∠B2d sudut-sudut berseberangan luar yaitu∠A2 dengan ∠B4 ∠A1 dengan ∠B3e sudut-sudut dalam sepihak yaitu∠A3 dengan ∠B2 ∠A4 dengan ∠B1f sudut-sudut luar sepihak yaitu∠A2 dengan ∠B3 ∠A1 dengan ∠B4g sudut-sudut berpelurus yaitu∠A1 dengan ∠A2 ∠A1 dengan ∠A4 ∠A2 dengan ∠A3 ∠A3 dengan ∠A4 ∠B1 dengan ∠B2 ∠B1 dengan ∠B4 ∠B2 dengan ∠B3 ∠B3 dengan ∠B4Soal tiga buah garis yakni k, l dan m dan juga sudut-sudut yang berada di lingkungannya. k dan l merupakan sejajar sementara garis m memotong garis k dan ∠ P = 125° , maka tentukanlah ketujuh sudut lain disekitarnya!Jawab∠R = ∠P = 125° Sebab R bertolak belakang dengan P ∠T = ∠P = 125° Sebab T sehadap dengan P ∠V = ∠R = 125° Sebab V sehadap dengan R∠Q = 180° − ∠P = 180° − 125° = 55° Sebab Q pelurus P ∠S = ∠Q = 55° Sebab S bertolak belakang dengan Q ∠U = ∠Q = 55° Sebab U sehadap dengan Q ∠W = ∠ U = 55° Sebab W bertolak belakang dengan USoal gambar di bawah iini, apabila EF sejajar DG dan segitiga ABC adalah segitia sama kaki dengan besar sudut C ialah 40°.Maka tentukana Besar sudut DBE b Besar sudut BEF c Besar sudut CAGJawaba Besar sudut DBELangkah pertaama adalah mencari terlebih dahulu besar sudut ABC merupakan segitiga sama kaki sehingga besar ∠ABC = ∠ sudut dalam suatu segitiga apabila kita jumlahkan adalah 180° sehingga,∠ABC = 180 − 40 2 = 70° dengan begitu ∠BAC juga 70°∠DBE = ∠ ABC = 70° karena keduanya bertolak Besar sudut BEF∠BEF = ∠ABC = 70° sebab keduanya sehadap atau ∠BEF = ∠ DBE = 70° sebab keduanya Besar sudut CAG∠CAG = 180 − ∠BAC = 180 − 70 = 110°, sebab CAG serta BAC 4. UN 2012/2013 paket 54Perhatikan gambar di bawah ini!Besar pelurus sudut SQR adalah …. 101° 100° 95° 92°JawabPerhatian** soal ini adalah salah satu soal jebakan, banyak yang mengira jika soal tersebut menanyakan ∠SQR padahal yang diminta yaitu ∠PQS. Untuk menjawab soal ini hal pertama yang harus kalin cari yaitu nilai x. Dalam hal ini ∠PQS serta ∠SQR adalah sudut saling pelurus, sehingga∠PQS + ∠SQR = 180°5x° + 4x+9° = 180°9x° + 9 = 180°9x° = 171°x° = 19°Pelurus ∠SQR = ∠PQSPelurus ∠SQR = 5x°Pelurus ∠SQR = ∠SQR = 95° Jawaban CSoal 5. UN 2009/2010 paket 10Perhatikan gambar berikut iniBesar sudut nomor 1 adalah 95°, dan besar sudut nomor 2 adalah 110°. Besar sudut nomor 3 adalah …. 5° 15° 25° 35°Jawab∠1 = ∠5 = 95° sudut dalam berseberangan∠2 + ∠6 = 180° saling berpelurus110° + ∠6 = 180°∠6 = 70°∠5 + ∠6 + ∠3 = 180°95° + 70° + ∠3 = 180°165° + ∠3 = 180°∠3 = 15° Jawaban BSoal 6. UN 2010/2011 paket 15Perhatikan gambar di bawah iniBesar ∠BCA adalah …. 70° 100° 110° 154°Jawab∠ABC + ∠CBD = 180° saling berpelurus∠ABC + 112° = 180°∠ABC = 68°∠BCA + ∠ABC + ∠BAC = 180°∠BCA + 68° + 42° = 180°∠BCA + 110 = 180°∠BCA = 70° Jawaban ASoal 7. UN 2010/2011 paket 15Perhatikan gambar di bawah iniBesar ∠P3 adalah …. 37° 74° 106° 148°Jawab∠P2 = 74° sudut luar berseberangan∠P2 + ∠P3 = 180° saling berpelurus74° + ∠P3 = 180°∠P3 = 106° Jawaban CSoal 8. UN 2012/2013 paket 1Perhatikan gambar di bawah iniBesar pelurus sudut KLN adalah …. 31° 72° 85° 155°JawabUntuk menjawab soal ini langkah pertama yang harus kalian cari yaitu nilai x. Dalam soal tersebut ∠KLN dan ∠MLN adalah sudut saling pelurus, sehingga∠KLN + ∠MLN = 180°3x + 15° + 2x+10° = 180°5x° + 25° = 180°5x° = 155°x° = 31°Pelurus ∠KLN = ∠MLNPelurus ∠KLN = 2x+10°Pelurus ∠KLN = + 10°Pelurus ∠KLN = 72° Jawaban BSoal 9. UN 2012/2013 paket 2Perhatikan gambar di bawah iniBesar penyiku ∠SQR adalah …. 9° 32° 48° 58°JawabPerhatian** soal ini adalah soal jebakan juga, sehingga banyak yang mengira jika soal tersebut menanyakan ∠SQR padahal yang diminta ialah ∠PQS. Untuk menjawab soal ini langkah pertama yang harus kalian cari yaitu nilai x. Dalam soal tersebut ∠SQR dan ∠PQS adalah sudut saling berpenyiku, sehingga∠SQR + ∠PQS = 90°3x + 5° + 6x+4° = 90°9x° + 9° = 90°9x° = 81°x° = 9°Penyiku ∠SQR = ∠PQSPenyiku ∠SQR = 6x+4°Penyiku ∠SQR = + 4°Penyiku ∠SQR = 58° Jawaban DSoal 10. UN 2012/2013 paket 5Perhatikan gambar di bawah iniBesar pelurus ∠AOC adalah …. 32° 72° 96° 108°JawabUntuk menjawab soal nomor 10, langkah pertama yang harus kalian cari yaitu nilai x. Dalam soal tersebut ∠AOC dan ∠BOC adalah sudut saling pelurus, sehingga∠AOC + ∠BOC = 180°8x – 20° + 4x+8° = 180°12x° – 12° = 180°12x° = 192°x° = 16°Pelurus ∠AOC = ∠BOCPelurus ∠AOC = 4x+8°Pelurus ∠AOC = + 8°Pelurus ∠AOC = 72° Jawaban BDemikianlah ulasan singkat kali ini mengenai Garis dan Sudut yang dapat kami sampaikan. Semoga ulasan di atas mengenai Garis dan Sudut dapat kalian jadikan sebagai bahan belajar kalian.
TuliskanDua Contoh Garis Sejajar. Misal gradien garis 1 adalah m 1 dan gradien garis 2 adalah m 2 maka. Dua garis sejajar adalah dua garis yang jika sobat panjangkan berapapun tidak akan pernah berpotongan. Dua garis sejajar adalah dua garis yang jika sobat panjangkan berapapun tidak akan pernah berpotongan. Dua garis yang berpotongan tegak.
Perhatikan gambar kubus berikut! Pasangan garis dan bidang yang saling sejajar adalah …. A. garis AD dan bidang CDHG B. garis AC dan bidang CDHG C. garis BG dan bidang EFGH D. garis AB dan bidang CDHG E. garis AE dan bidang EFGH Pembahasan Kita analisis satu-persatu opsi jawaban di atas A. garis AD dan bidang CDHG memotong B. garis AC dan bidang CDHG memotong C. garis BG dan bidang EFGH memotong D. garis AB dan bidang CDHG sejajar E. garis AE dan bidang EFGH memotong Jawaban D - Jangan lupa komentar & sarannya Email nanangnurulhidayat
KumpulanSoal Persamaan Garis Lurus Beserta Pembahasannya. fatmawati9625. Kelompok ii persamaan garis lurus. IlhamsyahIbnuHidayat. (8.5.1) soal dan pembahasan gradien, matematika sltp kelas 8. kreasi_cerdik. Persamaan garis lurus. insan budiman. Persamaan garis lurus.
Matematika Dasar » Geometri › Dua Garis yang Saling Berpotongan Geometri Dua garis dikatakan saling berpotongan apabila kedua garis terletak pada satu bidang datar dan berpotongan hanya di satu titik. Dua garis yang berpotongan dapat membentuk dua pasang sudut yang saling bertolak belakang. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Dua garis dikatakan berpotongan apabila dua garis tersebut terletak pada satu bidang datar dan kedua garis tersebut berpotongan hanya di satu titik. Coba amati Gambar 1 di bawah ini. Gambar 1. Dua garis berpotongan pada satu titik Sudut yang Terbentuk dari Dua Garis yang Berpotongan Dua garis yang berpotongan dapat membentuk dua pasang sudut yang saling membelakangi atau saling bertolak belakang. Besar dua sudut yang saling bertolak belakang adalah sama besar. Amati Gambar 2! Gambar 2. Dua garis berpotongan Pada Gambar 2, tampak bahwa dua garis saling berpotongan. Jika diketahui Dengan demikian, besar sudut yang dibentuk oleh garis \g_1\ dan \g_2\ φ adalah \∠φ=α_1-α_2\ Jadi, sudut antara g1 dan g2 dapat ditentukan dengan rumus di mana \φ\ = sudut yang dibentuk oleh garis \g_1\ dan \g_2\; \m_1\ = gradien garis \g_1\; \m_2\ = gradien garis \g_2\. Setelah besar \φ\ diperoleh maka dapat diperoleh hubungan berikut. Jika \\tan φ > 0\, berarti \φ\ bersudut lancip, dan Jika \\tan φ< 0\, berarti \φ\ bersudut tumpul. Dua Garis Berpotongan Tegak Lurus Jika dua garis \g_1\ dan \g_2\ berpotongan dan membentuk sudut \90^0\ sudut siku-siku, \∠φ=90^0\ maka dapat dikatakan bahwa kedua garis tersebut berpotongan tegak lurus Gambar 3. Sehingga diperoleh Gambar 3. Dua garis berpotongan tegak lurus Dengan demikian, dua garis dikatakan saling berpotongan tegak lurus ⊥, jika memenuhi Beberapa contoh berikut ini akan membantu kita memahami materi mengenai dua garis yang saling berpotongan. Contoh 1 Tentukan persamaan garis \g\ yang melalui titik -2,4 dan tegak lurus garis h dengan persamaan \ 3y= x - 6 \. Pembahasan Diketahui garis \ h ≡ 3y = x - 6 \, maka Karena garis \ g ⊥ h \, maka diperoleh Sehingga, persamaan garis \g\ adalah Jadi, persamaan garis \g\ adalah \ y = -3x - 2 \. Cukup sekian penjelasan mengenai dua garis yang saling berpotongan dalam artikel ini. Semoga bermanfaat. Sumber Sunardi, Slamet Waluyo & Sutrisna. 2014. Konsep dan Penerapan Matematika SMA/MA Kelas XI. Jakarta Penerbit PT Bumi Aksara. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
Perhatikan Gambar Berikut Sebutkan Pasangan Garis Mana Sajakah Yang Saling Sejajar Berpotongan Brainly Co Id from hubungan antar garis sejajar, berpotongan, dan berimpit. Garis dan sudut 193 gambar 7.6 contoh 7.1 gambar di bawah ini menunjukkan sebuah garis dengan empat titik yang berbeda.
Kelas 8 SMPPERSAMAAN GARIS LURUSBentuk Persamaan Garis Lurus dan GrafiknyaTentukan apakah pasangan garis berikut sejajar atau saling tegak lurus? a. Garis a yang melalui A7, -3 dan B11, 3 garis b yang melalui C-9, 0 dan D-5, 6 b. Garis m yang melalui P3, 5 dan Q0, 0 garis n yang melalui R0, 0 dan S-5, 3Bentuk Persamaan Garis Lurus dan GrafiknyaPERSAMAAN GARIS LURUSALJABARMatematikaRekomendasi video solusi lainnya0148Di bawah ini yang merupakan persamaan linear dengan 2 var...0203Dari persamaan garis berikut i y = 2x - 3 ii y =3x -...0226Diantara persamaan-persamaan berikut ini; manakah yang bu...0220Grafik persamaan garis lurus 2y+x=4 adalah ....A. y x B y...Teks videodia menemukan soal seperti ini kita bisa menggunakan rumus dari gradien jika diketahui dua titik dan perbedaan antara sejajar dan tegak lurus ke dua garis dikatakan sejajar apabila gradien dari kedua garis tersebut sama dengan kedua garis dikatakan tegak lurus jika gradien dari kedua garis tersebut saling berkebalikan dan juga berlawanan tanda pertama Tentukan garis a kita anggap disini adalah X1 disini y1 ini X2 ini Y 2 maka gradien dari garis a dapat dituliskan sebagai 3 kurang dengan min 3 per 11 dikurang dengan 7 jika kita hitung kita akan mendapatkan hasil 3 per 2Selanjutnya untuk yang garis B ini X1 ini ya satu ini X2 ini Y 2 maka gradien dari garis b dapat kita tunjukkan sebagai kurang dengan 0 per Min 5 kurang dengan min 9 jika kita hitung kita akan mendapatkan hasil 3 per 2 di sini bisa dilihat bahwa gradien dari garis a itu sama dengan gradien dari garis b. Maka garis dan garis itu saling sejajaruntuk yang B ini adalah X1 ini ya satu ini X2 ini Y 2 maka gradien dari garis m dapat dituliskan sebagai orang dengan 50 orang dengan 3 jika kita hitung kita akan mendapatkan hasil 5 per 3 lanjut Nyalakan garis n disini X1 ini y 1 x 2 Y 2 maka gradien dari garis n dapat kita Tuliskan sebagai 3 dikurang dengan 0 per Min 5 kurang dengan nolkita hitung kita akan mendapatkan hasil minus 3 per 5 disini kita bisa lihat bahwa gradien dari garis m dan gradien dari garis itu saling berkebalikan juga berlawanan tanda plus minus Nya maka dapat dikatakan bahwa garis m dan garis n itu saling tegak lurus eh sampai jumpa di soal-soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Gradiengaris yang melalui A (-2,3) dan B(-1,5) dirumuskan sebagai berikut. Jadi, gradien garis yang melalui titik A (-2,3) dan B(-1,5) adalah 2. 2. Gradien garis yang saling sejajar. Jika kamu menemukan ada dua atau lebih garis lurus yang saling sejajar, maka gradien masing-masing garisnya bernilai sama. Contohnya seperti berikut. Gradien garis a
Kedudukan Dua Garis Dua garis sejajar Pernahkah kalian memerhatikan rel atau lintasan kereta api? Apabila kita perhatikan lintasan kereta api tersebut, jarak antara dua rel akan selalu tetap sama dan tidak pernah saling berpotongan antara satu dengan lainnya. Apa yang akan terjadi jika jaraknya berubah? Apakah kedua rel itu akan berpotongan? Berdasarkan gambaran tersebut, selanjutnya apabila dua buah rel kereta api kita anggap sebagai dua buah garis, maka dapat kita gambarkan seperti Gambar di bawah ini. Garis m dan garis n di atas, jika diperpanjang sampai tak berhingga maka kedua garis tidak akan pernah berpotongan. Keadaan seperti ini dikatakan kedua garis sejajar. Dua garis sejajar dinotasikan dengan “//”. Dua garis atau lebih dikatakan sejajar apabila garis-garis tersebut terletak pada satu bidang datardan tidak akan pernah bertemu atau berpotongan jika garis tersebut diperpanjang sampai tak berhingga. Dua garis berpotongan Agar kalian memahami pengertian garis berpotongan, perhatikan Gambar di bawah ini. Gambar tersebut menunjukkan gambar kubus Amatilah garis AB dan garis BC. Tampak bahwa garis AB dan BC berpotongan di titik B dimana keduanya terletak pada bidang ABCD. Dalam hal ini garis AB dan BC dikatakan saling berpotongan. Dua garis dikatakan saling berpotongan apabila garis tersebut terletak pada satu bidang datar dan mempunyai satu titik potong. Dua garis berimpit Pada Gambar di atas menunjukkan garis ABdan garis CD yang saling menutupi, sehingga hanya terlihat sebagai satu garis lurus saja. Dalam hal ini dikatakan kedudukan masing-masing garis AB dan CD terletak pada satu garis lurus. Kedudukan garis yang demikian dinamakan pasangan garis yang berimpit. Dua garis dikatakan saling berimpit apabila garis tersebut terletak pada satu garis lurus, sehingga hanya terlihat sebagai satu garis lurus saja. Dua garis bersilangan Sediakan sebuah penghapus papan tulis yang terdapat di kelasmu. Apabila penghapus tadi kita anggap sebagai bentuk sebuah balok, maka dapat digambar seperti pada Gambar di bawah ini. Gambar di atas menunjukkan sebuah balok Perhatikan garis AC dan garis HF. Tampak bahwa kedua garis tersebut tidak terletak pada satu bidang datar. Garis AC terletak pada bidang ABCD, sedangkan garis HF terletak pada bidang EFGH. Selanjutnya apabila kedua garis tersebut, masing-masing diperpanjang, maka kedua garis tidak akan pernah bertemu. Dengan kata lain, kedua garis itu tidak mempunyai titik potong. Kedudukan garis yang demikian dinamakan pasangan garis yang saling bersilangan. Dua garis dikatakan bersilangan apabila garis-garis tersebut tidak terletak pada satu bidang datar dan tidak akan berpotongan apabila diperpanjang. Garis Horizontal dan Garis Vertikal Gambar tersebut menunjukkan sebuah neraca dengan bagianbagiannya. Perhatikan bagian tiang penyangga dan bagian lengan yang berada di atasnya. Kedudukan bagian tiang dan lengan tersebut menggambarkan garis horizontal dan vertikal. Bagian lengan menunjukkan kedudukan garis horizontal, sedangkan tiang penyangga menunjukkan kedudukan garis vertikal. Arah garis horizontal mendatar, sedangkan garis vertikal tegak lurus dengan garis horizontal. 2. sifat-Sifat Garis Sejajar Pada gambar di bawah ini, melalui dua buah titik yaitu titik A dan titik B dapat dibuat tepat satu garis, yaitu garis m. Selanjutnya, apabila dari titik C di luar garis m dibuat garis sejajar garis m yang melalui titik tersebut, ternyata hanya dapat dibuat tepat satu garis, yaitu garis n. Berdasarkan uraian di atas, secara umum diperoleh sifat sebagai berikut. Melalui satu titik di luar sebuah garis dapat ditarik tepat satu garis yang sejajar dengan garis itu. Selanjutnya perhatikan gambar di bawah ini. Pada gambar di bawah diketahui garis m sejajar dengan garis n m // n dan garis l memotong garis m di titik P. Apabila garis l yang memotong garis m di titik P diperpanjang maka garis l akan memotong garis n di satu titik, yaitu titik Q. Jika sebuah garis memotong salah satu dari dua garis yang sejajar maka garis itu juga akan memotong garis yang kedua. Sekarang, perhatikan Gambar di bawah ini. Pada gambar tersebut, mula-mula diketahui garis k sejajar dengan garis l dan garis m. Tampak bahwa garis k sejajar dengan garis l atau dapat ditulis k // l dan garis k sejajar dengan garis m, ditulis k // m. Karena k // l dan k // m, maka l // m. Hal ini berarti bahwa garis l sejajar dengan garis m. Jika sebuah garis sejajar dengan dua garis lainnya maka kedua garis itu sejajar pula satu sama lain. 2. Perbandingan Segmen Garis Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga senilai. Oke langsung saja ke materi, silahkan lihat gambar di bawah ini. Sebuah garis dapat dibagi menjadi n bagian yang sama panjang atau dengan perbandingan tertentu. Perhatikan Gambar di bawah ini. Gambar tersebut menunjukkan garis PQ dibagi menjadi 5 bagian yang sama panjang, sehingga PK = KL = LM = MN = NQ. Jika dari titik K, L, M, N, dan Q ditarik garis vertikal ke bawah, sedemikian sehingga PA = AB = BC = CD = DE maka diperoleh sebagai berikut. PM MQ = 3 2 PC CE = 3 2 maka PM MQ = PC CE QN NP = 1 4 ED DP = 1 4 maka, QN NP = ED DP PL PQ = 2 5 PB PE = 2 5 maka PL PQ = PB PE QL QP = 3 5 EB EP = 3 5 maka QL QP = EB EP Berdasarkan uraian tersebut, secara umum dapat disimpulkan sebagai berikut. Pada Δ ABC di bawah ini berlaku perbandingan sebagai berikut. AD DB = AE EC atau AD/ DB = AE / EC AD AB = AE AC atau AD / AB = AE / AC BD DA = CE EA atau BD / DA = CE / EA BD BA = CE CA atau BD / BA = CE / CA AD AB = AE AC = DE BC atau AD / AB = AE / AC = DE / BC Contoh soal tentang perbandingan garis Pada gambar di atas, diketahui QR // TS. Jika PR = 15 cm, PQ = 12 cm, dan PS = 10 cm, tentukan panjang PT; perbandingan panjang TS dan QR. Penyelesaian PS/PR = PT/PQ 10 cm/15 cm = PT / 12 cm PT = 10x 12/15 cm PT = 120 cm/15 PT = 8 cm Jadi, panjang PT = 8 cm. PT / PQ = TS/QR 8/12 = TS/QR 2/3 = TS/QR Jadi, TS QR = 2 3. Demikian postingan materi dan contoh soal perbandingan segmen garis. Untuk memantapkan pemahaman kamu tentang perbandingan segmen garis silahkan baca postingan Tips dan Trik Cara Mengerjakan Soal Perbandingan Segitiga yang pada dasarnya menggunakan konsep perbandingan segmen garis dan perbandingan seharga atau senilai. Pengertian Sudut dan Besar Sudut 3. Pengertian Sudut Agar kalian dapat memahami pengertian sudut, coba amati ujung sebuah meja, pojok sebuah pintu, atau jendela, berbentuk apakah ujung tersebut? Ujung sebuah meja atau pojok pintu dan jendela adalah salah satu contoh sudut. Perhatikan Gambar di bawah ini. Suatu sudut dapat dibentuk dari suatu sinar yang diputar pada pangkal sinar. Sudut ABC pada gambar di samping adalah sudut yang dibentuk BC yang diputar dengan pusat B sehingga BC berputar sampai BA . Ruas garis BA dan BC disebut kaki sudut, sedangkan titik pertemuan kaki-kaki sudut itu disebut titik sudut. Daerah yang dibatasi oleh kaki-kaki sudut, yaitu daerah ABC disebut daerah sudut. Untuk selanjutnya, daerah sudut ABC disebut besar sudut ABC. Sudut dinotasikan dengan “ ° ”. Sudut pada Gambar di atas dapat diberi nama a. sudut ABC atau ∠ABC; b. sudut CBA atau ∠CBA; c. sudut B atau ∠B. Dengan demikian, dapat dikatakan bahwa sudut adalah daerah yang dibentuk oleh pertemuan antara dua buah sinar atau dua buah garis lurus. 4. Besar Sudut Besar suatu sudut dapat dinyatakan dalam satuan derajat °, menit , dan detik “. Perhatikan jarum jam pada sebuah jam dinding. Untuk menunjukkan waktu 1 jam, maka jarum menit harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 jam = 60 menit. Adapun untuk menunjukkan waktu 1 menit, jarum detik harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 menit = 60 detik. Hal ini juga berlaku untuk satuan sudut. Hubungan antara derajat °, menit , dan detik “ dapat dituliskan sebagai berikut. 1° = 60’ atau 1’ = 1/60° 1’ = 60” atau 1” = 1/60’ 1° = 60 x 60” = atau 1’ = 1/ Contoh soal tentang besarnya sudut Tentukan kesamaan besar sudut berikut. 5o ° = …’ 8’ = …” 45,6o ° = …o …’ 48°48’ = …o Penyelesaian Karena 1° = 60’ maka 5° = 5 x 60’ = 300’ Karena 1’ = 60” maka 8’ = 8 x 60” = 480” 45,6° = 45° + 0,6° = 45° + 0,6 x 60’ 45,6° = 45° + 36’ 45,6° = 45°36’ 4. 48°48’ = 48° + 48’ 48°48’ = 48° + 48/60° 48°48’ = 48° + 0,8° 48°48’ = 48,8° 5. Jenis-Jenis Sudut Secara umum, kita mengenal ada lima jenis sudut, adapun kelima jenis sudut tersebut adalah sebagai berikut sudut siku-siku; sudut lurus; sudut lancip; sudut tumpul; sudut refleks. Perhatikan sudut yang dibentuk oleh kedua jarum jam jika jam menunjukkan pukul Ternyata pada pukul kedua jarum jam membentuk sudut siku-siku. Sudut siku-siku adalah sudut yang besarnya 90°. Sudut siku-siku dinotasikan dengan “ ” atau “ ”. Sekarang, putarlah jarum jam pendek ke angka 6, dengan jarum jam panjang tetap di angka 12. Tampak bahwa kedua jarum jam membentuk sudut lurus. Jika kalian perhatikan, sudut lurus dapat dibentuk dari dua buah sudut siku-siku yang berimpit. Sudut lurus adalah sudut yang besarnya 180°. Selain sudut siku-siku dan sudut lurus, masih terdapat sudut yang besarnya antara 0° dan 90°, antara 90° dan 180°, serta lebih dari 180°. Sudut yang besarnya antara 0° dan 90° disebut sudut lancip. Sudut yang besarnya antara 90° dan 180° disebut sudut tumpul. Sudut yang besarnya lebih dari 180° dan kurang dari 360° disebut sudut refleks. Antar sudut Jika Dua Garis Sejajar Dipotong Oleh Garis Lain Sebelumnya sudah membahas materi hubungan antar sudut, akan tetapi sekarang juga tetap membahas materi tentang hubungan antar sudut. Pembahasankali ini lebih memfokuskan bagaimana hubungan antar sudut jika sudut-sudut tersebut sehadap dan berseberangan dan bagaiman jika sudut-sudut tersebut luar sepihak dan dalam sepihak. Oke, silahkan anda pelajari materinya kemudian pelajaricara menyelesaikan soal-soalnya yang berkaitan dengan materi ini. Sudut-Sudut Sehadap dan Berseberangan Pada gambar di atas, garis m // n dan dipotong oleh garis l. Titik potong garis l terhadap garis m dan nberturut-turut di titik P dan titik Q. Pada gambar diatas, tampak bahwa sudut P2 dan sudut Q2 menghadap arah yang sama. Demikian juga sudut P1 dan sudut Q1, sudut P3 dan sudut Q3, serta sudut P4 dan sudut Q4. Sudut-sudut yang demikian dinamakan sudut-sudut sehadap. Sudut sehadap besarnya sama. Jika dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya sama. Jadi, dapat dituliskan ∠P1 sehadap dengan ∠Q1 dan ∠P1 = ∠Q1; ∠P2 sehadap dengan ∠Q2 dan ∠P2 = ∠Q2; ∠P3 sehadap dengan ∠Q3 dan∠P3 = ∠Q3; ∠P4 sehadap dengan ∠Q4 dan ∠P4 = ∠Q4. Contoh soal dan Pembahasan tentang Sudut-Sudut Sehadap Perhatikan gambar di atas. a. Sebutkan pasangan sudut-sudut sehadap. b. Jika besar ∠K1 = 102°, tentukan besar ∠L1; ∠K2; ∠L2. Penyelesaian a. Berdasarkan gambar di samping diperoleh ∠K1 sehadap dengan ∠L1 ∠K2 sehadap dengan ∠L2 ∠K3 sehadap dengan ∠L3 ∠K4 sehadap dengan ∠L4 b. Jika∠K1 = 102° maka ∠L1 = ∠K1 sehadap = 102° ∠K2 = 180° – ∠K1 berpelurus = ∠K2 = 180° – 102° = ∠K2 = 78° ∠L2 = ∠K2 sehadap = ∠L2 = 78o Perhatikan di atas. Pada gambar tersebut besar ∠P3 =∠Q1 dan ∠P4 = sudut Q2. Pasangan sudut P3 dan sudut 1, serta sudut P4 dan sudut Q2 disebut sudut-sudut dalam berseberangan. Jika dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk adalah sama besar. Sekarang perhatikan pasangan sudut P1 dan sudut Q3, serta sudut P2 dan sudut Q4. Pasangan sudut tersebut adalah sudut-sudut luar berseberangan, di mana sudut P1 = sudut Q3 dan sudut P2 = sudut Q4. Jika dua buah garis sejajar dipotong oleh garis lain maka besar sudut-sudut luar berseberangan yang terbentuk adalah sama besar. Contoh soal dan Pembahasan tentang Sudut-Sudut Berseberangan Perhatikan gambar di atas. a. Sebutkan pasangan sudut- sudut dalam berseberangan. b. Jika ∠A1 = 75°, tentukan besar i ∠A2; ii ∠A3; iii ∠B4. Penyelesaian a. Pada gambar di atas diperoleh ∠A1 dalam berseberangan dengan ∠B3; ∠A2 dalam berseberangan dengan ∠B4. b. Jika ∠A1 = 75° maka i ∠A2 = 180°– sudut A1 berpelurus ∠A2 = 180° – 75° ∠A2 = 105° ii ∠A3 = ∠A1 bertolak belakang = 75° iii ∠B4 = ∠A2 dalam berseberangan = 105° Sudut-Sudut Dalam Sepihak dan Luar Sepihak Perhatikan Gambar di atas. Pada gambar tersebut garis m // n dipotong oleh garis l di titik P dan Q. Perhatikan sudut P3 dan sudut Q2. Kedua sudut tersebut terletak di dalam garis m dan n serta terhadap garis l keduanya terletak di sebelah kanan sepihak. Pasangan sudut tersebut dinamakan sudut-sudut dalam sepihak. Dengan demikian diperoleh ∠P3 dalam sepihak dengan ∠Q2; ∠P4 dalam sepihak dengan ∠Q1. Sebelumnya telah sudah posting bahwa ∠P3 = ∠Q3 sehadap dan ∠P2 = ∠Q2 sehadap. Padahal ∠2 = 180° – ∠P3 berpelurus, sehingga ∠Q2 = ∠P2 = 180° – ∠P3 atau ∠P3 + ∠Q2 = 180° Tampak bahwa jumlah ∠P3 dan ∠Q2 adalah 180°. Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa ∠P4 + ∠Q1 = 180°. Contoh Soal dan Pembahasan Tentang Sudut-Sudut Dalam Sepihak Pada Gambar di atas, garis p // q dan garis r memotong garis p dan q di titik R dan S. a. Tentukan pasangan sudut-sudut dalam sepihak. b. Jika ∠S1 = 120°, tentukan ∠R2 dan ∠R3. Penyelesaian a. Berdasarkan gambar di samping diperoleh ∠R2 dalam sepihak dengan ∠S1; ∠R3 dalam sepihak dengan ∠S4. b. Jika ∠S1 = 120° maka ∠R2 + ∠S1 = 180° dalam sepihak ∠R2 = 180° – ∠S1 ∠R2 = 180° – 120° ∠R2 = 60° ∠R3 =∠S1 dalam berseberangan ∠R3 = 120° Perhatikan kembali ∠P1 dengan ∠Q4 dan ∠P2 dengan ∠Q3 pada Gambar di atas. Pasangan sudut tersebut disebut sudut-sudut luar sepihak. Akan kita buktikan bahwa ∠P1 + ∠Q4 = 180°. ∠ P1 + ∠ P4 = 180o berpelurus Padahal ∠ P4 = ∠ Q4 sehadap. Terbukti bahwa ∠ P1 + ∠ Q4 = 180°. Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut luar sepihak adalah 180°. Antarsudut Pasangan Sudut yang Saling Berpelurus Bersuplemen Pada Gambar di atas, garis AB merupakan garis lurus, sehingga besar ∠AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga terbentuk sudut AOC dan sudut BOC. Sudut AOC merupakan pelurus atau suplemen dari sudut BOC. Demikianpula sebaliknya, sudut BOC merupakan pelurus atau suplemen sudut AOC, sehingga diperoleh sudut AOC + sudut BOC = sudut AOB a° + b° = 180° atau dapat ditulis a° = 180° – b° atau b° = 180° – a°. Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpelurus bersuplemen adalah 180°. Sudut yang satu merupakan pelurus dari sudut yang lain. Contoh soal Pasangan Sudut yang Saling Berpelurus Bersuplemen Perhatikan gambar di atas. Hitunglah nilai a° dan tentukan pelurus dari sudut a°. Penyelesaian Berdasarkan gambar diperoleh bahwa 3a° + 2a° = 180° 5a° = 180° a° = 180°/5 a° = 36 Pelurus sudut a° = 180° – 36° = 144°. Pasangan Sudut yang Saling Berpenyiku Berkomplemen Pada gambar di atas terlihat sudut PQR merupakan sudut siku-siku, sehingga besar sudut PQR = 90°. Jika pada sudut PQR ditarik garis dari titik sudut Q, akan terbentuk dua sudut, yaitu sudut PQS dan sudut RQS. Dalam hal inidikatakan bahwa sudut PQS merupakan penyiku komplemen dari sudut RQS, demikian pula sebaliknya. Sehingga diperoleh sudut PQS + sudut RQS = sudut PQR x° + y° = 90°, dengan x° = 90° – y° dan y° = 90° – x°. Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpenyiku berkomplemen adalah 90°. Sudut yang satu merupakan penyiku dari sudut yang lain. Contoh Soal Tentang Pasangan Sudut yang Saling Berpenyiku Berkomplemen Perhatikan gambar di atas. a. Hitunglah nilai x°. b. Berapakah penyiku sudut x°? c. Berapakah pelurus dari penyiku x°? Penyelesaian a. x° + 3 x° = 90° 4 x° = 90° x° = 22,5° b. penyiku dari x° = 90° – 22,5° = 67,5° c. pelurus dari penyiku x° = 180° – 67,5° = 112,5° Pasangan Sudut yang Saling Bertolak Belakang Pada gambar di atas, garis KM dan LN saling berpotongan di titik O. Dua sudut yang letaknya saling membelakangi disebut dua sudut yang saling bertolak belakang, sehingga diperoleh sudut KON bertolak belakang dengan sudut LOM; dan sudut NOMbertolak belakang dengan sudut KOL. Bagaimana besar sudut yang saling bertolak belakang? Agar dapat menjawabnya, perhatikan uraian berikut. sudut KOL + sudut LOM = 180° berpelurus sudut KOL = 180° – sudut LOM ……………………….. i sudut NOM + sudut MOL = 180° berpelurus sudut NOM = 180° – sudut MOL ………………………… ii Dari persamaan i dan ii diperoleh sudut KOL = sudut NOM = 180° – sudut LOM Jadi, besar sudut KOL = besar sudut NOM. Dengan cara yang sama, maka dapat membuktikan bahwa sudut KON = sudut LOM. Dari uraian di atas dapat disimpulkan sebagai berikut. Jika dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang adalah sama besar. Contoh soal tentang Pasangan Sudut yang Saling Bertolak Belakang Perhatikan Gambar di atas. Diketahui besar sudut SOP = 45°. Tentukan besar a. sudut ROQ; b. sudut SOR; c. sudut POQ. Penyelesaian Diketahui sudutSOP = 45°. a. sudut ROQ = sudut SOP bertolak belakang P = 45° b. sudut SOP +sudut SOR = 180° berpelurus sudut SOR = 180° – sudut SOP = 180° – 45° = 135° c. sudut POQ = sudut SOR bertolak belakang = 135°
Jikakita perhatikan, perpanjangan HR yaitu HR' dan perpanjangan FB yaitu FP' saling bersilangan karena terletak di dua bidang yang berbeda, HR' dan FP' tidak akan memiliki titik persekutuan, maka HR' dan FP' tidak akan berpotongan. Pasangan garis yang sejajar adalah pasangan garis yang terdapat pada alasnya yang berupa persegi
MatematikaGEOMETRI Kelas 8 SMPKOORDINAT CARTESIUSPosisi Garis Terhadap Sumbu KoordinatPerhatikan bidang koordinat berikut. Garis l dan garis m adalah pasangan garis yang saling .... a. berpotongan b. tegak lurus c. berimpit d. sejajarPosisi Garis Terhadap Sumbu KoordinatKOORDINAT CARTESIUSGEOMETRIMatematikaRekomendasi video solusi lainnya0150Tentukan jarak antara titik A 2,2 dan B 5,2.0528Pada bidang koordinat, gambarlah garis yang melalui pasan...0619Diketahui titik A3, 0 dan B-2, 12. Pasangan titik yan...0049Diketahui titik K4,3 dan L-5,3. Jika dibuat garis yan...Teks videoPada soal kali ini kita akan mempelajari kedudukan garis terhadap Garis pertama kedudukan dua garis yang saling berpotongan yaitu kedudukan dua garis di mana Garis pertama dan garis kedua memiliki Tepat satu titik persekutuan yang kedua kedudukan dua garis yang saling tegak lurus yaitu kedudukan dua buah garis di mana Garis pertama dan garis kedua memiliki satu titik persekutuan yang membentuk sudut 90° yang ketiga kedudukan dua buah garis yang saling berhimpit yaitu kedudukan dua garis di mana Garis pertama dan garis kedua memiliki lebih dari satu titik perpotongan dan yang garis yang sejajar yaitu kedudukan dua garis yang tidak akan berpotongan meskipun kedua garis tersebut diperpanjang pada soal kali ini kita perhatikan garis l dan garis m kedua garis memiliki satu titik perpotongan namun sudutnya bukan 90° maka kedudukan kedua garis tersebut adalah saling berpotongan pilihan jawaban yang tepat adalah a. Dian sampai jumpa di pembahasan berikutnya
Akanditinjau untuk setiap pilihan jawaban. Definisi lainnya adalah dua garis dikatakan sejajar jika dan hanya jika keduanya mempunyai mempunyai jarak. Banyak Ruas Garis Berbeda Dari Gambar Di Atas Adalah Kedudukan garis kl dan mn ditunjukkan gambar berikut. Pasangan garis yang saling sejajar adalah. Karenanya, dua garis dikatakan saling sejajar jika dan hanya jika mempunyai
Di dalam artikel ini terdapat 7 buah contoh soal matematika SMP dalam bentuk pilihan ganda tentang hubungan antar ini merupakan bagian dari bab garis dan sudut yang diajarkan pada kelas 7 SMP semester di bawah ini sudah dibuat berdasarkan materi yang terdapat dalam buku Matematika SMP kelas 7 semester 2 kurikulum 2013 revisi adalah soal-soalnya. Semoga bermanfaat. Contoh Soal 1Perhatikan gambar dibawah ini. Gambar diatas menunjukkan hubungan antara........A. Garis yang terletak di atas bidangB. Titik yang terletak di luar bidangC. Titik yang terletak pada garisD. Titik yang terletak di luar garisPembahasanGambar tersebut menunjukkan hubungan antara titik dengan garis. Ada dua kemungkinan hubungan antara titk dengan garis yaituPertama adalah titik yang terletak pada garis. Titik yang terletak pada garis merupakan bagian dari garis gambar pada soal di atas menunjukkan bahwa titik A terletak pada garis l dan titik a merupakan bagian dari garis l sehingga hubungan yang ditunjukkan oleh gambar tersebut adalah titik yang terletak pada antara titik dan garis yang kedua adalah titik yang berada diluar garis. Kebalikannya titik ini bukan bagian dari gambar dibawah ini. Kunci Jawaban CContoh Soal 2Sebuah garis merupakan bagian dari bidang A. Garis tersebut membagi bidang A menjadi dua bagian. Hubungan antara garis tersebut dengan bidang A adalah.........A. Garis terletak pada bidangB. Garis memotong bidangC. Garis berada diluar bidangD. Garis menembus bidangPembahasanJika ada sebuah garis merupakan bagian dari bidang, maka tentu garis tersebut harus terletak di dalam bidang seperti yang ditunjukkan oleh gambar dibawah ini. Dari gambar diatas juga terlihat bahwa garis yang terletak pada bidang membagi bidang tersebut menjadi dua karena itu hubungan antara garis dengan bidang A adalah garis yang terletak pada yang memotong bidang = garis yang menembus bidang. Garis ini bukan bagian dari bidang tetapi terdapat satu titik yang merupakan perpotongan antara garis dengan garis yang berada diluar bidang adalah garis yang bukan bagian dari bidang. Kunci Jawaban AContoh Soal 3Diketahui ciri-ciri dua garis sebagai berikut1 jarak antara kedua garis tersebut di semua bagian adalah sama2 tidak pernah berpotongan di suatu ritik3 perpotongan dua garis membentuk sudut 90 derajat4 salah satu garis merupakan bagian dari garis lainnyaYang merupakan ciri-ciri dua garis sejajar ditunjukkan oleh nomor........A. 1 dan 2B. 1 dan 3C. 2 dan 4D. 3 dan 4Pembahasan Perhatikan gambar dua garis sejajar di bawah gambar tersebut dapat kita ambil kesimpulan bahwa garis sejajar memiliki ciri-ciri sebagai Jarak antara kedua garis adalah sama2. Jika diperpanjang secara terus-menerus maka garis tersebut tidak akan pernah berpotonganMaka berdasarkan hal tersebut jawaban dari soal di atas adalah yang option A yaitu 1 dan yang ketiga yaitu perpotongan dua garis membentuk sudut 90 derajat adalah ciri-ciri dari dua garis yang saling berpotongan tegak ciri-ciri tempat yaitu salah satu garis merupakan bagian dari garis lainnya adalah ciri-ciri dari dua garis yang Jawaban AContoh Soal 4Pada garis l terdapat empat buah titik yaitu titik A, B, C dan D. Banyak ruas dari garis l tersebut adalah.........A. 3B. 4C. 5D. 6PembahasanBerikut adalah ciri-ciri gambar dari garis l dengan 4 buah titik yang berada pada garis menjawab soal di atas tentu kita harus mengetahui terlebih dahulu apa yang dimaksud dengan ruas atau segmen garis adalah bagian dari garis yang dibatasi oleh pengertian tersebut, maka banyak ruas garis l yang padanya terdapat 4 buah titik adalah 6 buah yaitu rus garis AB, AC, AD, BC, BD dan CD. Kunci Jawaban D Contoh Soal 5Perhatikan gambar dibawah ini Berdasarkan gambar tersebut maka pernyataan dibawah iji yang tidak benar adalah.........A. Terdapat dua garis yang saling sejajar yaitu garis p//q dan garis r//sB. Jika garis p//q dan garis r//s, maka garis p pasti sejajar dengan garis r atau garis q pasti sejajar dengan garis sC. Garis r memotong garis p dan q di titik a dan dD. Garis s memotong garis p dan q di titik b dan cJika dilihat gambar pada soal di atas terdapat dua buah batang garis yang saling sejajar yaitu garis p//q dan garis r//s pernyataan option A benar.Tetapi garis p atau q tidak sejajar dengan garis r atau s. Garis-garis ini saling berpotongan di satu titik yang terlihat pada gambar di atas sebagai titik a, b, c dan karena itu pernyataan option B tidak satu sifat garis sejajar adalah jika misalnya garis x sejajar dengan y dan garis y sejajar dengan z, maka sudah pasti garis x sejajar dengan z. Jika digambarkan maka berikut adalah kedudukan dari garis- garis pernyataan option C dan D adalah Jawaban B Gambar dibawah ini digunakan untuk menjawab soal nomor 6 dan 7. Contoh Soal 6Berdasarkan gambar limas segitiga di atas, garis-garis yang saling sejajar adalah kecuali........A. Garis AB//DEB. Garis AD//BEC. Garis AC//EFD. Garis AD//CFPembahasanGambar di atas merupakan gambar limas segitiga . Bentuk segitiga bagian alas = bentuk segitiga bagian gambar diatas terdapat beberapa pasangan garis yang saling sejajar yaituAB//DEBC//EFAC//DFAD//BE//CFKunci Jawaban CContoh Soal 7Berdasarkan gambar limas diatas maka pernyataan dibawah ini yang tidak benar adalah........A. Jika garis garis pada limas tersebut diperpanjang maka terdapat 6 buah titik potongB. Garis AB dan AD saling berpotongan tegak lurus di titik AC. Terdapat 12 pasang garis yang saling berpotongan tegak lurusD. Garis DE berpotongan tegak lurus dengan garis DFPembahasanUntuk menjawab soal nomor 7 ini mari kita periksa kebenaran masing-masing pernyataan yang terdapat di pilihan APernyataan ini adalah benar karena jika setiap garis pada limas diperpanjang maka akan terdapat 6 buah titik perpotongan yang merupakan sudut-sudut dari segitiga seperti yang ditunjukkan oleh gambar dibawah ini. Pernyataan BPernyataan ini juga benar karena jika kedua garis ini diperpanjang maka titik perpotongan nya akan membentuk sudut 90 derajat. Hal tersebut menunjukkan bahwa dua garis tersebut saling berpotongan tegak CPernyataan C adalah pernyataan yang benar. Pada limas segitiga di atas terdapat 12 pasang garis yang saling tegak lurus yaituAD dan ABAD dan ACAD dan DEAD dan DFBE dan ABBE dan BCBE dan DEBE dan EFCF dan ACCF dan BCCF dan DFCF dan EFData kalian lihat bahwa setiap tinggi dimas atau gadis tegak limas saling berpotongan tegak lurus dengan 4 buah garis. Karena ada 3 buah tinggi limas maka total garis-garis yang berpotongan tegak lurus adalah 12 DPernyataan ini salah karena tidak ada satupun garis yang terdapat pada alas maupun tutup limas yang berbentuk segitiga yang saling berpotongan tegak lurus. Hal ini disebabkan karena tidak ada sudut segitiga yang 90 Jawaban DContoh Sosl 8Perhatikan gambar dibawah ini Diantara gambar diatas, yang menunjukkan bahwa titik terletak pada garis ditunjukkan oleh nomor…….A. 1 dan 2B. 1 dan 3C. 2 dan 4D. 3 dan 4Pembahasan Kalian tentu bisa langsung mengetahui jawaban dari soal diatas bukan! ya, jawabannya adalah garis 3 dan garis 4. Garis 1 dan garis 2 menunjukkan bahwa titik berada di luar Jawaban DContoh Soal 9Perhatikan gambar belah ketupat PQRS dibawah ini Berdasarkan gambar diatas, pasangan garisn- garis berikut yang merupakan garis – garis yang sejajar adalah…….A. PR dan SQB. PQ dan SRC. PQ dan QRD. OS dan ORPembahasanGaris PR dan SQ adalah garis yang saling berpotongan yaitu dititik O. begitu juga dengan garis OS dan OR. Sedangkan garis PQ dan QR juga merupakan garis yang berpotongan tetapi dititik garis-garis yang sejajar pada belah ketupat diatas adalah garis PQ dan SR. ada dua garis sejajar pada bangun belah ketupat dan yang satunya lagi adalah garis PS dan Jawaban BContoh Soal 10Garis l tegak lurus terhadap garis m. berdasarkan hal tersebut maka pernyataan dibawah ini yang tidak benar adalah……..A. Mempunyai satu titik potongB. Sudut yang dibentuk oleh perpotongan garis l dan m adalah 900C. Mempunyai jarak antar garis yang sama panjangD. Notasi untuk garis l yang berpotongsn dengan garis m adalah l⊥mPembahasanJika sebuah garis tegak lurus terhadap garis lain, maka garis tersebut akan mempunyai satu buah titik potong pernyataan A benar. Kemudian, sudut yang dibentuk oleh perpotongan kedua garis tersebut adalah 900. Akan ada 4 buah sudut 900 yang akan dibentuk oleh dua garis yang saling berpotongan tegak menyatakan bahwa garis l tegak lurus terhadap m, maka digunakan lambang⊥. Lambang untuk dua garis yang sejajar adalah //. Sedangkan lambang/notasi untuk dua garis yang berpotongan tapi tidak tegak lurus adalah x. Dua garis yang berpotongan tegak lurus tidak memiliki jarak antar garis yang sama. Jika jarak antar garisnya sama, maka garis-garis tersebut merupakan garis yang sejajar. Garis yang sejajar tidak akan pernah Jawaban CContoh Soal 11Diketahui balok sebagai berikut. Pada balok tersebut dibuat 4 buah diagonal ruang seperti yang ditunjukkan oleh gambar diatas. Berdasarkan gambar tersebut, maka pernyataan diabawah ini yang tidak benar adalah……..A. AB // DC //EF //HGB. AB ⊥ BC ⊥ BFC. ∠EOH = BOCD. ∠AOB = ∠BOC = ∠COD = ∠AOD = 900PembahasanPernyataan A benar keempat garis ini memang sejajar. Pada kubus terdapat banyak sekali garis yang B = benar titik B merupakan titik potong ketiga garis tersebutPertanyaan C = benar kedua sudut ini dibentuk oleh perpotongan garis EC dan BH dan perpotongan kedua diagonal ruang balok ini tidaklah saling tegak lurusPernyataan D = salah karena perpotongan diagonal ruang balok tidak saling tegak lurusKunci Jawaban DNah, hitunglah 11 buah contoh soal matematika SMP dalam bentuk pilihan ganda untuk materi hubungan antar garis yang dapat saya berikan pada artikel kali soal-soal dan pembahasan nya diatas dapat bermanfaat bagi kamu yang sudah berkunjung ke blog ada ingin sama koreksi kamu dapat menulis sudah di kolom komentar di bagian bawah. Terima kasih.
Secarasingkat, cara menemukan persamaan garis lurus yang saling tegak lurus sesuai dengan langkah-langkah berikut. Menentukan gradien garis pertama (m g1) yaitu garis yang akan tegak lurus dengan garis yang akan dicari persamaannnya Menentukan gradien garis kedua (m g1) yairu garis yang akan dicari persamaannya
Ruasgaris adalah kurva lurus yang berpangkal dan berujung karena terdapat titik pada pangkal dan ujungnya. Pada gambar di atas berlaku sudut saling berpelurus atau bersuplemen yang besarnya adalah 180 0 . ⇔ 5x + 90 0 + 4x = 180 0 ⇔ 9x + 90 0 = 180 0 ∠K dan ∠M adalah pasangan sudut berpelurus, besar jumlah dua sudut yang saling
ev4C. g663exrxpk.pages.dev/270g663exrxpk.pages.dev/694g663exrxpk.pages.dev/971g663exrxpk.pages.dev/416g663exrxpk.pages.dev/593g663exrxpk.pages.dev/221g663exrxpk.pages.dev/938g663exrxpk.pages.dev/439g663exrxpk.pages.dev/85g663exrxpk.pages.dev/273g663exrxpk.pages.dev/796g663exrxpk.pages.dev/17g663exrxpk.pages.dev/676g663exrxpk.pages.dev/453g663exrxpk.pages.dev/25
garis l dan garis m adalah pasangan garis yang saling